Свойства и область применения серебра. Применение серебра и его соединений

Серебро широко используется как ювелирный и декоративный металл, а также в монетах. Его мягкий блеск подчеркивает сверкание прозрачных драгоценных камней, а пластичность серебра позволя­ет создавать из него филигранные изделия.

Широко распространенный металл, но по сравнению с другими металлами оно встречается относительно редко.

Оно присутствует во многих минералах и в гидротермальных жилах, в небольших количествах встречается также в окисленных зонах отло­жений серебряных руд. Более 80% всего добываемого серебра - побочный продукт добычи меди, свинца или цинка. Свободное серебро обычно встречается в виде гранул или самородков, но иногда попадаются и так на­зываемые дендритные формы, похожие на ветви деревьев.

Свойства серебра


В Периодической таблице элементов серебро занимает место между золотом и медью, и его свойства представляют собой нечто среднее между свойствами этих двух металлов. По своей ковкости и пластичности оно занимает второе место после золота и легко поддается обработке, а по электро и теплопроводности серебро превосходит все другие металлы, благодаря чему широко используется в производстве электронных схем и в электрических сетях.

Галогениды серебра (соли) светочувствительны, и фотография является едва ли не самым крупным потребителем этого ме­талла. Для того чтобы сделать 2000 цветных фотографий, достаточно десяти граммов серебра. Серебро - прекрасный катализатор для многих окислительных процессов, в частности в процессе синтеза формальдегида окислением метанола кислородом воздуха.


Серебро используется также и в производстве зеркал. Многие жидкости в течение длительного времени прекрасно сохраняют­ся в серебряных сосудах, и в античные времена именно в них хранили за­пасы воды во время длительных путешествий. Греческий историк Геродот (ок. 485-425 до н. э.) писал, что во время путешествий персидского царя Кира II Великого «всегда сопровождали четырехколесные повозки, запря­женные волами, на которых везли воду в сереб­ряных сосудах».

Польза серебра

Говоря о человеке, что он «родился с серебряной ложкой во рту», имеют в виду не его богатство, а его здоровье. В начале XVIII века обратили внимание на то, что дети, которых кормили серебряными ложками, здоровее детей, которых кормили ложками из других металлов, и серебряные «пустышки» приобрели в США огромную популярность, ибо считалось, что они полезны для здоровья.

Серебро широко используется в фармацевтической промышленности. Так, сульфадиазин серебра счита­ется самым эффективным средством при лечении ожогов. В качестве бак­терицида серебро используют и во многих водоочистительных системах.

Изделия из серебра

Первые известные нам изделия из серебра - ювелирные укра­шения и декоративные предметы, найденные в шумерских цар­ских погребениях, - относятся к 4000 г. до н. э.В 2000 г. до н. э. в Европе и на Ближнем Востоке уже добывали содержащие се­ребро свинцовые руды и выплавляли из них драгоценный ме­талл. Однако в Средние века серебряные ювелирные изделия были редкостью.

Его преимущественно использовали для деко­ративных целей. Серебро - слишком мягкий металл, и поэтому из него никогда не делали оружия. Особый интерес представляют древнеримские серебряные изделия.

Серебро издавна использовалось для изготовления монет. Серебряные монеты, найденные в Африке, в долине реки Нила, и в Азии, в долине Инда, датируются 800 г. до н. э. В 1995 г. Казначейство США выпустило в обраще­ние большое количество серебряных монет.

Добыча серебра


Добыча серебра в Новом Свете, и в первую очередь в Южной Америке, началась сразу же после открытия испанцами Американского континента. В связи с расцветом ремесел в эпоху Возрождения в Европе значительно возрос спрос на серебро, и, стремясь удовлетворить его, европейцы быстро начали эксплуатировать серебряные рудники Мексики, Боливии и Перу.

Первым поставщиком серебра из Нового Света был город Потоси на юге Боливии, возникший в 1545 г. на том месте, где в горе Серро-Рико были от­крыты залежи серебряной руды.

Южно-американские рудники доминировали на мировом рынке вплоть до середины XIX в., когда большие залежи серебряной руды были обнару­жены в США - в Неваде, Колорадо и Юте (Неваду иногда называют Сере­бряным штатом).


К концу XIX в. самые богатые месторождения серебра во всем мире уже были основательно истощены, однако благодаря техниче­скому прогрессу добыча руды увеличилась. На сегодняшний день лидера­ми по добыче серебра являются Мексика и Перу.

Серебро - очень мягкий металл, и в производстве ювелирных изделий, монет и всевозможных декоративных предметов его используют в виде сплавов с другими металлами, преимущественно с медью. Критерием чи­стоты серебра является , численно равная количеству частей сере­бра на 1000 частей сплава.


Так, серебро 925-й пробы называется стерлинговым серебром. Во многих странах стерлинговое серебро (92,5% серебра и 7,5% меди) с XIV в. остается стандартом чистого серебра. Серебро 800-й пробы считается ювелирным. Золото, используемое ювелирами, может со­держать до 25% серебра.

Полированное серебро приобретает приятный блеск и серебристо-белый цвет. На воздухе серебро окисляется и покрывается черной пленкой окси­да серебра, которая легко удаляется с помощью мыла, воды или специаль­ных составов. Однако иногда этот налет лишь украшает изделие, подчерки­вая его детали и блеск полированного металла.

Аргентум, или серебро - металл и химический элемент, которому присвоен атомный номер 47 в периодической таблице Менделеева. Химическая формула металла - Ag. Серебро было исследовано человечеством еще в четвертом тысячелетии до нашей эры. Открытие этого металла обошлось без помощи ученых, поскольку он был найден человеком как самородное серебро. Причем самородки достигали весьма впечатлительных размеров. К примеру, в пятнадцатом столетии был добыт самородок массой свыше 20 тонн.

Однако добыча серебра требовала больше усилий по сравнению с теми, которые приходилось прикладывать для . По этой причине на протяжении нескольких столетий серебро стоило . Запасы серебряной руды на Земле на сегодня составляют свыше 550 тонн, причем государствами-лидерами в добыче серебра считаются:

  1. Перу.
  2. Австралия.
  3. Чили.
  4. Мексика.

Драгоценный металл содержится в коре Земли в концентрации 70 миллиграммов на тонну. В условиях природы аргентум встречается в большинстве случаев в рудных залежах в комбинации с другими элементами. В природе находится свыше пятидесяти видов серебряных руд, однако эффективными, с точки зрения экономики, считаются такие:

  • самородное серебро;
  • кюстелит;
  • электрум;
  • бромаргерит;
  • прустит;
  • агвиларит и другие.

Серебро может встречаться в природе совместно с золотом, и такое образование называется электрумом. Благородный металл в большом количестве сосредоточен в рудах, содержащих уран, висмут и никель.

Кристаллы серебра

Самородное серебро есть в сульфидных рудах, в которых оно образует мельчайшие кристаллы, распыленные среди других металлов, из которых состоят руды. На изломах кристаллы имеют неровную угловатую поверхность, что делает их похожими на крючки. Это находка, которая встречается в природных условиях гораздо реже золота. Причем внешний вид таких самородков весьма необычный. Из-за своей пластичности серебро образует самородки, напоминающие решетки, трубочки, ветви и жгуты. По этой причине не используется в промышленных целях, а служит лишь экспонатом в музеях.

Физико-химические свойства

Серебро как металл характеризуется белым металлическим блеском. Среди всех существующих в природе металлов элемент аргентум обладает высокой электропроводностью и теплопроводностью. Твердость серебра составляет 25 килограмм-сил на кубический миллиметр. Именно это качество и определяет прочность и износостойкость металла.

Плотность - это еще одна характеристика, определяющая физические свойства драгоценного металла. Плотность серебра составляет 10,5 грамма на кубический сантиметр. Аргентум также отличается тугоплавкостью (температура плавления составляет 962 градуса). В то же время серебро невероятно пластичное, особенно в чистом виде. Так, из этого металла без труда можно изготовить тончайшую пластину или скрутить нить.

Металл выдерживает сильные нагрузки, поэтому из него изготавливаются контактные элементы для вычислительной техники, космических ракет, подводных лодок и других агрегатов. Серебро идеально отражает свет, из-за чего этот металл используется в изготовлении высокоточных зеркал.

Аргентум не вступает в реакцию с такими элементами:

  • кислородом;
  • азотом;
  • углеродом;
  • водородом;
  • кремнием.

Серебро вступает в реакцию с серой, при этом образуя сульфид серебра. В реакцию с галогенами аргентум вступает при нагревании. При контакте с концентрированной азотной кислотой превращается в нитрат серебра и диоксид азота. Серебро также реагирует на концентрированную серную кислоту. При высокой температуре аргентум может вступать в реакцию с соляной кислотой.

Применение серебра

Физико-химические свойства аргентума позволяют с успехом применять его в ювелирной промышленности, производстве технических приборов и в медицине.

При изготовлении ювелирных изделий и столовых приборов серебро никогда не используется в чистом виде, а все из-за пластичности этого металла. Добавление в более прочных металлов, к примеру, меди, позволяет придать ему устойчивость к деформации. Для оценки содержания драгоценного металла в сплаве используется такая мера, как проба. Она подается в виде трехзначного числа, демонстрирующего содержание серебра в килограмме сплава. К примеру, проба 925 означает, что масса серебра в килограмме сплава составляет 925 граммов, или 92,5 %.

Серебряное кольцо 925 пробы

В России официально признанными считаются такие пробы металла:

  1. 720: низкопробное серебро, так как в одном килограмме содержится всего 720 граммов драгоценной части. Остальные 280 граммов приходятся на медь, придающую сплаву желтоватый оттенок. Применяется в изготовлении пружин, игл и других деталей, выдерживающих большие нагрузки. Серебро с пробой 720 очень прочное, поэтому оно характеризуется идеальной износостойкостью. В России изделия из серебра с пробой 720 не могут продаваться в ювелирных магазинах, так как они не подлежат клеймированию.
  2. 800: это низкопробное серебро имеет желтый отлив, что не позволяет использовать сплав в изготовлении украшений. Такой металл считается подходящим сырьем для производства столовых приборов.
  3. 830: аналогичен сплаву с пробой 800.
  4. 875: сплав серебра с пробой 875 примечателен тем, что его в большинстве случаев выдают за модное ныне белое золото. На украшения из такого серебра также наносится позолота, из-за чего при визуальной оценке их не получается отличить от золотых. Все же в метрической системе проб золота пробы 875 нет.
  5. 916: во времена СССР из серебра с пробой 916 изготавливали столовые приборы. Ныне такой металл не используется в ювелирной промышленности.
  6. 925: серебряный стандарт, . Ценится в ювелирной промышленности благодаря своим антикоррозионным свойствам. Привлекательность и пластичность делают серебро с пробой 925 идеальным сырьем для изготовления ювелирных изделий - колец, сережек, браслетов, цепочек и т. д. Из серебра 925 пробы также производят столовые приборы.
  7. 960: свойства такого металла во многом напоминают , а все потому, что сплав на 96 % состоит из драгоценной части. Подходит для производства высококачественных изделий, украшенных рельефными композициями. Из-за своей пластичности украшения, произведенные из сплава с пробой 960, легко деформируются, поэтому требуют бережного отношения к себе. К примеру, эти изделия не подходят для ежедневного ношения.
  8. 999: серебро без примесей используется как сырье для изготовления коллекционных монет и слитков. Из этого металла также производят детали для электротехники, составляющие ионизаторов и очистителей воздуха, высокоточных зеркал и т. д. Чистый аргентум входит в состав бактерицидных медпрепаратов.

Серебро, которое используется для изготовления украшений и столовых приборов, со временем темнеет, а все из-за того, что оно окисляется под влиянием воздуха. Но правильный уход за изделиями позволит долго поддерживать их в идеальном состоянии.

Содержание статьи

СЕРЕБРО. Этот красивый металл известен людям с древнейших времен. Изделиям из серебра, найденным в Передней Азии, более 6 тысяч лет. Из сплава золота и серебра (электрума) были изготовлены первые в мире монеты. И в течение нескольких тысячелетий серебро, наряду с золотом и медью, было одним из основных монетных металлов. С цветом серебра связано и его латинское название Argentum, оно происходит от греческого argos – белый, блестящий.

Серебро в природе.

Серебро – редкий элемент; в земной коре его почти в тысячу раз меньше, чем меди – всего лишь около стотысячной доли процента. Известно же оно было так давно, потому что встречается в природе в виде самородков, иногда очень больших. Особенно богаты серебром были расположенные в Центральной Европе Рудные горы, Гарц, горы Богемии и Саксонии. Из серебра, добывавшегося близ города Иоахимсталя (ныне Яхимов в Чехии), были отчеканены миллионы монет. Они вначале так и назывались – «иоахимсталеры»; затем это название укоротилось до «талера» (в России эти монеты называли по первой части слова – «ефимками»). Талеры были в ходу по всей Европе, став самой распространенной большой серебряной монетой в истории. От талера произошло и название доллара. Немецкие серебряные рудники были настолько богаты, что из добывавшегося металла делали огромные вазы, столовые сервизы на сотни персон, на каждый из которых расходовали тонны серебра.

Легенда приписывает открытие серебряных рудников в 968 императору Оттону I Великому (912–973), основателю «Священной Римской империи германской нации». Во время учебы в Германии эту легенду услышал М.В.Ломоносов и изложил ее в одном из своих трудов. Оттон послал своего егеря Раммеля в лес для ловли диких зверей. На опушке леса Раммель спешился, а коня привязал к дереву. Ожидая хозяина, конь разрыл копытами землю и выбил оттуда тяжелые и светлые камни. Когда их показали императору, тот понял, что это богатая серебряная руда и велел учредить на этом месте рудники. А гору назвали Раммельсбергом... По свидетельству немецкого врача и металлурга Георга Агриколы (1494–1555) месторождение продолжало разрабатываться и при его жизни, то есть спустя шесть веков, но почти все серебряные самородки уже были найдены в 14–16 вв. Так, в 1477 в саксонском округе Цвиккау близ города Шнееберга был добыт самородок массой 20 тонн (современные геологи полагают, что он частично включал минерал аргентит). Серебряные рудники продолжали действовать ещё при жизни Ломоносова. Ныне они в значительной степени истощены.

После открытия и завоевания Америки множество самородков серебра было найдено на территории современных Перу, Чили, Мексики, Боливии. Так, в Чили был обнаружен самородок в виде пластины массой 1420 кг. Многие элементы имеют «географические» названия, Аргентина же – единственная страна, названная по уже известному элементу. Последние из самых крупных самородков серебра найдены уже в 20 в. в Канаде (провинция Онтарио). Один из них, названный «серебряный тротуар», имел длину 30 м и уходил вглубь земли на 18 м. Когда из него было выплавлено чистое серебро, его оказалось 20 тонн!

Самородное серебро находят редко; основная часть серебра в природе сосредоточена в минералах, которых известно более 50; в них серебро связано с серой, селеном, теллуром или галогенами. Основной серебряный минерал – аргентит Ag 2 S. Еще больше серебра рассеяно среди различных горных пород, так что основная часть добываемого в мире серебра получается в результате комплексной переработки полиметаллических руд, содержащих свинец, медь и цинк.

Свойства серебра.

Чистое серебро – сравнительно мягкий и пластичный металл: из 1 г серебра можно вытянуть тончайшую проволочку длиной почти 2 км! Серебро – довольно тяжелый металл: по плотности (10,5 г/см 3) оно лишь немного уступает свинцу. По электропроводности же и теплопроводности серебру нет равных (поэтому серебряная ложка в стакане горячего чая быстро нагревается). Плавится серебро при относительно низкой температуре (962° С), что значительно облегчает его обработку. Серебро легко сплавляется со многими металлами; небольшие добавки меди делают его более твердым, годным для изготовления различных изделий.

«Серебро не окисляется на воздухе, – писал Д.И.Менделеев в своем учебнике Основы химии , – а потому причисляется к разряду так называемых благородных металлов. Оно обладает белым цветом, гораздо более чистым, чем для всех других известных металлов, в особенности, когда оно представляет химическую чистоту... Химически чистое серебро столь мягко, что стирается весьма легко...» Но хотя серебро с кислородом непосредственно не реагирует, оно может растворять значительные количества этого газа. Даже твердое серебро при температуре 450° С способно поглотить пятикратный объем кислорода. Значительно больше кислорода (до 20 объемов на 1 объем серебра) растворяется в жидком металле.

Это свойство серебра приводит к красивому (и опасному) явлению – разбрызгиванию серебра, которое известно с древних времен. Если расплавленное серебро поглотило значительные количества кислорода, то затвердевание металла сопровождается высвобождением большого количества газа. Давлением выделяющегося кислорода корка на поверхности застывающего серебра разрывается, часто с большой силой. В результате происходит внезапное взрывное разбрызгивание металла.

При 170° С серебро на воздухе покрывается тонкой пленкой оксида Ag 2 О, а под действием озона образуются высшие оксиды Ag 2 O 2 и Ag 2 O 3 . Но особенно «боится» серебро иода, например, иодной настойки и сероводорода. Во многих домах есть серебряные (или посеребренные) изделия – старые монеты, ложки, вилки, подстаканники, кольца, цепочки, другие украшения. Со временем они часто тускнеют и даже могут почернеть. Причина – действие сероводорода. Его источником могут быть не только тухлые яйца, но и резина, некоторые полимеры. В присутствии влаги серебро легко реагирует с сероводородом с образованием на поверхности тончайшей пленки сульфида: 4Ag + 2H 2 S + O 2 = 2Ag 2 S + 2H 2 O; из-за неровностей поверхности и игры света такая пленка иногда кажется радужной. Постепенно пленка утолщается, темнеет, становится коричневой, а потом черной. Сульфид серебра не разрушается при сильном нагреве, не растворяется в кислотах и щелочах. Не очень толстую пленку можно удалить механически, отполировав предмет зубной пастой или порошком с мыльной водой.

Чтобы защитить поверхность серебра от потемнения ее пассивируют – покрывают защитной пленкой. Для этого хорошо очищенное изделие погружают на 20 минут в слегка подкисленный 1%-ный раствор дихромата калия K 2 Cr 2 O 7 при комнатной температуре. Образовавшаяся тонкая пленка Ag 2 Cr 2 O 7 защищает поверхность серебра.

Серебро легко растворяется в азотной и горячей концентрированной серной кислоте: 3Ag + 4HNO 3 = 3AgNO 3 + NO + 2H 2 O; 2Ag + 2H 2 SO 4 = Ag 2 SO 4 + SO 2 + 2H 2 O. Серебро растворяется также в концентрированных иодо- и бромоводородной кислотах, а в присутствии кислорода – и в хлороводородной (соляной) кислоте; реакции способствует образование комплексных галогенидов серебра: 2Ag + 4HI = 2H + H 2

Применение серебра.

Старинное применение серебра – изготовление зеркал (сейчас недорогие зеркала покрывают алюминием). Из серебра делают электроды для мощных цинк-серебряных аккумуляторов. Так, в аккумуляторах затонувшей американской подводной лодки «Трешер» было три тонны серебра. Высокую теплопроводность и химическую инертность серебра используют в электротехнике: из серебра и его сплавов делают электрические контакты, серебром покрывают провода в ответственных приборах. Из серебряно-палладиевого сплава (75% Ag) делают зубные протезы.

Огромные количества серебра раньше шли на изготовление монет. Сейчас из серебра делают в основном юбилейные и памятные монеты. Самая тяжелая современная серебряная монета, выпущенная в России в 1999, весит 3000 граммов, имеет тираж 150 штук. Посвящена она 275-летию Санкт-петербургского монетного двора. При высоком содержании серебра монеты и другие изделия весьма устойчивы на воздухе. Низкопробное серебро часто зеленеет. Зеленый налет содержит основной карбонат меди (CuOH) 2 CO 3 . Он образуется под действием углекислого газа, паров воды и кислорода.

Много серебра расходуется для изготовления ювелирных изделий и столовых приборов. На таких изделиях, как правило, ставят пробу, указывающую массу чистого серебра в граммах в 1000 г сплава (современная проба), либо число золотнитков в одном фунте сплава (дореволюционная проба). В 1 фунте содержится 96 золотников, поэтому, например, старой пробе 84 соответствует современная (84/96)1000 = 875. Так, с 1886 проба монет достоинством 1 рубль, 50 и 25 копеек была 86 2/5 (современная 900), а проба 20-, 15-, 10- и 5-копеечных монет (они чеканились с 1867 года) была 48 (500). Советские рубли и полтинники имели пробу 900, а более мелкие – 500. Современные серебряные изделия могут иметь пробу 960, 925 (так называемое «стерлинговое» серебро), 916, 875, 800 и 750.

Чтобы узнать содержание серебра в сплаве (его пробу), а также отличить серебряные изделия от сплавов, похожих на серебро, используют разные способы. Самый простой – реакция с так называемой пробирной кислотой для серебра, которая представляет собой раствор 3 мл концентрированной серной кислоты и 3 г дихромата калия в 32 мл воды. Каплю раствора наносят на поверхность изделия в незаметном месте. Под действием серной кислоты в присутствии сильного окислителя медь и серебро переходят в сульфаты CuSO 4 и Ag 2 SO4, далее сульфат серебра быстро превращается в нерастворимый рыхлый осадок дихромата серебра Ag 2 Cr 2 O 7 красного цвета. Он особенно хорошо заметен на поверхности, если каплю осторожно смыть водой. Красный осадок легко удалить механически; при этом на поверхности останется чуть заметное светлое пятнышко.

Этот метод не дает положительного результата, если в сплаве меньше 25% серебра (т.е. проба меньше 250). Такие бедные серебром сплавы встречаются довольно редко. В этом случае серебро можно обнаружить, если капнуть на поверхность азотной кислотой, а затем на то же место – раствором поваренной соли. В присутствии серебра в сплаве появится молочное помутнение: кислота растворяет небольшое количество металла, а хлорид-ионы дают с ионами серебра белый осадок нерастворимого хлорида AgCl.

Для более точного определения пробы ювелиры используют пробирный камень – черный камень с отшлифованной матовой поверхностью. Изделием проводят по камню, а оставшийся штрих сравнивают с цветом штрихов от эталонных сплавов известной пробы.

Многие декоративные серебряные изделия покрыты красивой чернью. Для чернения используют так называемую серную печень, содержащую полисульфид калия (в основном K 2 S 4). Под действие этого реагента на поверхности серебра образуется черная пленка сульфида Ag 2 S.

Соединения серебра часто неустойчивы к нагреванию и действию света. Открытие светочувствительности солей серебра привело к появлению фотографии и быстрому увеличению спроса на серебро. Еще в середине 20 во всем мире ежегодно добывалось около 10 000 тонн серебра, а расходовалось значительно больше (дефицит покрывался за счет старых запасов). Причем почти половина всего серебра шла на изготовление кино- и фотоматериалов. Так, обычная черно-белая фотопленка содержит (до проявления) до 5 г/м 2 серебра. Вытеснение черно-белых фотографий и кинофильмов цветными позволило значительно снизить потребление серебра.

Серебро применяется и в химической промышленности для изготовления катализаторов некоторых процессов, а в пищевой промышленности из серебра делают некорродирующие аппараты. Интересное, хотя и ограниченное применение находит иодид серебра; его используют для местного управления погодой путем распыления с самолетов. В присутствии даже ничтожных количеств AgI в облаках образуются крупные водяные капли, которые и выпадают в виде дождя. «Работать» могут уже мельчайшие частицы иодида серебра размером всего 0,01 мкм. Теоретически из кубического кристалла AgI размером всего 1 см можно получить 10 21 таких мельчайших частиц. Как подсчитали американские метеорологи, всего 50 кг иодида серебра вещества достаточно для «затравки» всей атмосферы над поверхностью США (а это 9 млн. квадратных километров!). Поэтому, несмотря на сравнительно высокую стоимость солей серебра, применение AgI с целью вызвать искусственный дождь оказывается практически выгодным.

Иногда требуется выполнить прямо противоположное задание: «разогнать» тучи, не дать пролиться дождю при проведении какого-либо важного мероприятия (например, Олимпийских игр). В этом случае иодид серебра нужно распылять в облаках заблаговременно, за десятки километров от места проведения торжества. Тогда дождь прольется на леса и поля, а в городе будет солнечная сухая погода.

Биохимия серебра.

Серебро не относится к биоэлементам; в живом веществе его содержание в 6 раз меньше, чем в земной коре. Однако присутствие ионов Ag + не безразлично для многих биохимических процессов.Хорошо известно бактерицидное действие малых концентраций серебра на питьевую воду. При содержании 0,05 мг/л ионы серебра обеспечивают высокую антимикробную активность, причем такую воду можно пить без вреда для здоровья. Вкус ее при этом не изменяется. (Для сравнения: для питья космонавтов допускается концентрация Ag + до 0,1 – 0,2 мг/л.). При содержании 0,1 мг/л вода консервируется на целый год, тогда как кипячение воды переводит ионы серебра в физиологически неактивную форму. Препараты серебра все шире используют для стерилизации питьевой воды (некоторые бытовые фильтры содержат «посеребренный» активированный уголь, выделяющий в воду очень малые дозы серебра). Для дезинфекции воды в бассейнах было предложено насыщать ее бромидом серебра. Насыщенный раствор AgBr содержит 7,3·10 –7 моль/л ионов серебра или около 0,08 мг/л, что безвредно для здоровья человека, но губительно для микроорганизмов и водорослей.

Бактерицидное действие ничтожных концентраций ионов серебра объясняется тем, что они вмешиваются в жизнедеятельность микробов, мешая работе биологических катализаторов – ферментов. Соединяясь с аминокислотой цистеином, входящей в состав фермента, ионы серебра препятствуют его нормальной работе. Аналогично действуют и ионы некоторых других тяжелых металлов, например, меди или ртути, но они намного токсичнее серебра. А главное – хлориды меди и ртути прекрасно растворяются в воде и потому представляют большую опасность для человека; любая же хорошо растворимая соль серебра в желудке человека под действием соляной кислоты быстро превращается в хлорид серебра, растворимость которого в воде при комнатной температуре составляет менее 2 мг/л.

Однако, как это часто бывает, то, что полезно в малых дозах, губительно в больших. Не составляет исключения и серебро. Так, введение значительных концентраций ионов серебра вызывает у животных снижение иммунитета, изменения в сосудистой и нервной тканях головного и спинного мозга, а при увеличении дозы – повреждения печени, почек, щитовидной железы. Описаны случаи отравления человека препаратами серебра с тяжелыми нарушениями психики. К счастью, в теле человека через 1–2 недели остается всего 0,02–0,1% введенного серебра, остальное выводится из организма.

При многолетней работе с серебром и его солями, когда они поступают в организм длительно, но малыми дозами, может развиться необычное заболевание – аргирия. Поступающее в организм серебро способно медленно отлагаться в виде металла в соединительной ткани и стенках капилляров разных органов, в том числе в почках, костном мозге, селезенке. Накапливаясь в коже и слизистых оболочках, серебро придает им серо-зеленую или голубоватую окраску, особенно сильную на открытых участках тела, подвергающихся действию света. Изредка окраска может быть настолько интенсивной, что кожа напоминает кожу негров.

Развивается аргирия очень медленно, первые ее признаки появляются через 2–4 года непрерывной работы с серебром, а сильное потемнение кожи наблюдается лишь спустя десятки лет. Раньше всего темнеют губы, виски и конъюнктива глаз, затем веки. Сильно могут быть окрашены слизистые оболочки рта и десны, а также лунки ногтей. Иногда аргирия проявляется в виде мелких сине-черных пятен. Раз появившись, аргирия не исчезает, и вернуть коже ее прежний цвет не удается. Если не считать чисто косметических неудобств, больной аргирией может не испытывать никаких болезненных ощущений или расстройств самочувствия (если не поражены роговица и хрусталик глаза); в этом отношении аргирию можно назвать болезнью лишь условно. Есть у этой болезни и своя «ложка меда» – при аргирии не бывает инфекционных заболеваний: человек настолько «пропитан» серебром, что оно убивает все болезнетворные бактерии, попадающие в организм.

Илья Леенсон

Серебро в медицине.

О том, что серебро металл ценный, знают все. Но не всем известно, что этот металл может и исцелять. Если хранить воду в серебряных сосудах или просто в контакте с серебряными изделиями, то мельчайшие частички серебра – ионы Ag + – переходят в раствор и убивают микроорганизмы и бактерии. Такая вода долго не портится и не «зацветает».

Об этом свойстве серебра знали очень давно. Персидский царь Кир II Великий (558–529 до н.э.) пользовался серебряными сосудами для хранения питьевой воды во время своих военных походов. Знатные римские легионеры носили нагрудники и налокотники из серебряных пластинок: при ранении прикосновение такой пластинки предохраняло от инфекции.

Тогда-то и было обнаружено, что прикосновение к кристаллам полученной серебряной соли не проходит бесследно: на коже остаются черные пятна, а при длительном контакте – глубокие ожоги. Нитрат серебра – бесцветный (белый) порошок, хорошо растворимый в воде, на свету он чернеет с выделением металлического серебра.

Медицинский ляпис, строго говоря, не чистый нитрат серебра, а его сплав с нитратом калия , иногда отлитый в виде палочек – ляписного карандаша. Ляпис оказывает прижигающее действие и применяется с давних пор. Однако пользоваться им надо чрезвычайно аккуратно: нитрат серебра может вызвать отравления и сильные ожоги. Хранить ляпис следует в местах, недоступных детям!

Лечебное действие нитрата серебра заключается в подавлении жизнедеятельности микроорганизмов; в небольших концентрациях он действует как противовоспалительное и вяжущее средство, более концентрированные растворы, как и кристаллы AgNO 3 , прижигают живые ткани. Это связано с образованием альбуминатов (белковых соединений) серебра при соприкосновении с кожей. Раньше ляпис применяли для удаления мозолей и бородавок, прижигания угрей. Да и теперь, если нет возможности прибегнуть к криотерапии (прижиганию сухим льдом или жидким азотом), чтобы безболезненно избавиться от ненужных наростов, пользуются ляписом.

Людмила Аликберова

Коррозийная стойкость. Металлические материалы - металлы и сплавы на основе металлов, - приходя в соприкосновение с окружающей средой (газообразной или жидкой), подвергаются с той или иной скоростью разрушению. Причина этого разрушения лежит в химическом взаимодействии: металлы вступают в окислительно-восстановительные реакции с веществами, находящимися в окружающей среде. Самопроизвольное разрушение металла, происходящее под химическим воздействием окружающей среды, называется коррозией. К важнейшим видам коррозии относятся химическая и электрохимическая коррозия. Химической называется коррозия, которая протекает при взаимодействии металлов с сухими газами или растворами неэлектролитов. К электрохимической коррозии относятся все случаи коррозии в водных растворах. Серебро относятся к группе металлов промежуточной термодинамической стабильности, то есть имеет положительное значение стандартного электродного потенциала, не превышающего значения электродного потенциала, связанного с окисляющим действием кислорода в нейтральной среде. Поэтому серебро будет устойчиво в любых кислых и нейтральных средах в отсутствие кислорода. Серебро может использоваться для покрытия им других металлов в целях повышения их устойчивости к коррозии.

Сплавы серебра. В жидком состояние большинство металлов растворяются друг в друге и образуют однородный жидкий сплав. Серебро относятся к легкоплавким металлам и используется для сплавов с неограниченной растворимостью в твердом состоянии. Серебро образует сплавы типа твердых растворов с золотом, медью, палладием и интерметаллические соединения с элементами Li, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Al, Ga, In, Tl, Pr, Sn, Zr, Th, P, Sb, S, Se , а также сплавы типа эвтектик с элементами Bi, Ge, Ni, Pb, Si, Na, Tl. Присутствие меди делает сплав более прочным, твердым, звонким. С увеличением содержания меди цвет сплавов все более приближается к красному, а температура плавления понижается (до некоторо предела, затем она снова увеличивается). Сплавы серебра с медью, золотом, платиной служат для изготовления ювелирных и бытовых изделий, монет, лабораторной посуды, зубных пломб, мостов и протезов. Кроме этого серебро включают в состав легко- и тугоплавких припоев. Основные припои серебра используемые в промышленности и радиотехнике: серебряно-медно-фосфорные припои и серебряно-медно-цинковые припои. Способность серебра к смачиванию керамики также используется в промышленности, его добавляют к свинцово-оловянным припоям, применяемым при монтаже электронных компонентов на поверхности печатных плат. В технике серебряные припои занимают особое место,потому что паяный ими шов не только прочен и плотен, но и коррозийнно устойчив. Такими припоями паяют судовые трубопроводы, котлы высокого давления, трансформаторы, электрические шины и т.д. Чем выше требования к прочности и коррозионной устойчивости паяного шва, тем с большим процентом серебра применяются припои. В отдельных случаях используют припои с 70% серебра. А для пайки титана годно лишь чистое серебро.

Соединения серебра с неметаллами.

Суспензия оксида серебра применяется в медицине как антисептическое средство. Смесь состава 5% - Ag 3 O, 15% - CO 2 O 3 , 30% - CuO и 50% - MnO 2 , называемая «гопкалитом», служит для зарядки противогазов в качестве защитного слоя против оксида углерода. Оксид серебра может служить источником для получения атомарного кислорода и используется в «кислородных пистолетах», которые применяются для испытания стойкости к окислению материалов, предназначенных для космических аппаратов.

Водный раствор фторида серебра служит для дезинфекции питьевой воды и используется в производстве медицинских препаратов.

Хлорид серебра же нашел применение в фотопленках из-за того, что под действием света хлорид серебра постепенно темнеет, разлагаясь с выделением металлического серебра и хлора.

Бромид серебра применяется для изготовления фотопленок и в качестве катализатора при получении монокарбоновых жирных кислот или олефинов с помощью реактива Гриньяра.

Кристаллическая структура йодида серебра очень похожа на структуру кристаллов льда, поэтому на частицах иодида серебра легко образуются кристаллы льда из переохлажденного пара. На этой особенности основано использование его для ускорения выпаденния дождя в засушливых районах.

Цианид серебра применяют при гальваническом серебрении, в производстве нитрилов и изонитрилов.

Ортофосфат серебра применяют для изготовления светочувствительной бумаги и эмульсий.

Применение серебра в радиотехнике.

Как уже было сказано выше, серебро и его соединения используются во многих областях народного хозяйства. В радиотехнике применяются как чистое серебро, так и его сплавы. Существенная доля серебра идет на серебрение медных проводников, тончайшую серебряную пленку наносят для повышения электропроводимости и увеличения коррозионной стойкости. Кроме того, этому покрытию свойственны эластичность и прекрасное сцепление с основным металлом. Серебро применяют также при использовании высокочастотных волноводов. По электропроводности серебру нет равных, поэтому серебряные проводники незаменимы в приборах высокой точности. Сплавы и припои серебра применяют при производстве транзисторов, микросхем, печатных плат и других радиоэлектронных компонентов. Серебряные покрытия хороши тем, что они прочны и плотны - беспористы. Следует отметить, что серебро лучший электропроводник при нормальных условиях, но, в отличие от многих металлов и сплавов, оно не становится сверхпроводником в условиях предельно достижимого холода, и используется при сверхнизких температурах в качестве электроизолятора. Легированное тугоплавким металлом (например вольфрамом) серебро является идеальным материалом для изготовления высоковольтных переключателей и электропрерывателей. Серебряные контакты в сенсорных переключателях используются в компьютерных клавиатурах и различных панелях управления.

Кроме применения в качестве проводника серебро применяется в серебряно-цинковых аккумуляторах. В электрических аккумуляторах с щелочным электролитом многие детали подвергаются опасности воздействия на них едкого калия или натрия высокой концентрации. В то же время детали эти должны обладать высокой электропроводностью. Лучшего материала для них, чем серебро, обладающее устойчивостью к щелочам и высокой электропроводностью, не найти. В серебряно-цинковых аккумуляторах, которые обладают хорошими электрическими характеристиками и имеют малую массу и объем, электродами служат оксиды серебра Ag 2 O, AgO (катод) и губчатый цинк (анод); электролитом служит раствор KOH. При работе аккумулятора цинк окисляется, превращаясь в ZnO и Zn(OH) 2 , а оксид серебра восстанавливается до металла. Суммарную реакцию, протекающую при разрядке аккумулятора, можно приближенно выразить уравнением:

AgO + Zn = Ag + ZnO (2.9)

Напряжение заряженного серебряно-цинкового аккумулятора приближенно равно 1,85 В. При снижении напряжения до 1,25 В аккумулятор заряжают. При этом процессы на электродах «обращаются»: цинк восстанавливается, серебро окисляется - вновь получаются вещества, необходимые для работы аккумулятора.

Серебряно-цинковые гальванические (аккумуляторы) элемента имеют вдвое большую электрическую емкость, чем свинцовые (кислотные) элементы такого же размера, поэтому они все чаще применяются в радиотехнике, где уменьшению массы оборудования придается особенно большое значение. Перспективным направлением применения серебра является применение его комплексных соединений с органическими радикалами в электронных коммутаторах памяти, обусловленное следующим процессом: под действием света происходит обратимый переход между двумя стабильными состояниями этого соединения.

Огромное количество серебро идет на изготовление ювелирных украшений и химической посуды стойкой к действию щелочей.

Техника безопасности

Так как нитрат серебра очень ядовит и оставляет на коже черные несмываемые пятна, а иногда и глубокие ожоги следует аккуратно работать с реактивами: внимательно читать этикетки, не уносить реактивы общего пользования на свои рабочие места, во избежание загрязнения держать склянки с растворами закрытыми, не путать пробки, не выливать обратно в склянки растворы реактивов. Также необходимо работать в перчатках, халате, а лицо защитить маской от возможного попадания брызг на лицо. Если все же образовались черные пятна их можно удалить, последовательно смачивая йодной настойкой и раствором гипосульфита (тиосульфат натрия, NaSO).

Для проведения в пробирке того или иного опыта следует брать растворы в количествах не более 1-2 мл.

Необходимо соблюдать общие правила работы в химической лаборатории.

Ещё за 2500 лет до нашей эры египетские воины использовали серебро для лечения боевых ран: накладывали на них тонкие серебряные пластины, и раны быстро заживали. В русской же православной церкви святую воду для прихожан всегда выдерживали в серебряных сосудах. Существуют много историй о том как серебряные сосуды спасали жизни, хранившим в них воду. Также существует мнение, что серебро придает силу, носящему его.

  • Так как обладает наибольшей электропроводностью, теплопроводностью и стойкостью к окислению кислородом при обычных условиях, применяется для контактов электротехнических изделий, например, контакты реле, ламели, а также многослойных керамических конденсаторов.
  • В составе припоев: медносеребряный припой ПСР-45 используется для пайки медных котлов, чем выше процент серебра, тем выше качество; иногда также, добавляя его к свинцу в количестве 5 %, им заменяют оловянный припой.
  • В составе сплавов: для изготовления катодов гальванических элементов (батареек).
  • Применяется как драгоценный металл в ювелирном деле (обычно в сплаве с медью, иногда с никелем и другими металлами).
  • Используется при чеканке монет, наград - орденов и медалей.
  • Йодистое серебро применяется для управления климатом ("разгон облаков")
  • Из-за высочайшей электропроводности и стойкости к окислению применяется:
    • в электротехнике и электронике как покрытие ответственных контактов
    • в СВЧ технике как покрытие внутренней поверхности волноводов
  • Используется как покрытие для зеркал с высокой отражающей способностью (в обычных зеркалах используется алюминий). Определяющую роль его в этом вопросе сыграла его высокая отражательная способность и пластичность: из серебра можно получить пластинки толщиной всего лишь 0,25 мкм!
  • Часто используется как катализатор в реакциях окисления, например при производстве формальдегида из метанола.
  • Используется как дезинфицирующее вещество, в основном для обеззараживания воды. Некоторое время назад для лечения простуды использовали раствор протаргол и колларгол, которые представляли собой коллоидное серебро.

Области применения серебра постоянно расширяются и его применение - это не только сплавы, но и химические соединения. Определённое количество серебра постоянно расходуется для производства серебряно-цинковых и серебряно-кадмиевых аккумуляторных батарей, обладающих очень высокой энергоплотностью и массовой энергоёмкостью и способных при малом внутреннем сопротивлении выдавать в нагрузку очень большие токи.

В химической промышленности применяются аппараты из серебра (для получения ледяной уксусной кислоты, фенола), лабораторная посуда (тигли или лодочки, в которых плавятся чистые щелочи или соли щелочных металлов, оказывающие разъедающее действие на большинство других металлов), лабораторные инструменты (шпатели, щипцы, сита и др.). Серебро и его соединения применяются в качестве катализаторов в реакциях обмена водород - дейтерий, детонации смеси воздух - ацетилен, при сжигании окиси углерода, окислении спиртов в альдегиды кислоты и др.
В пищевой промышленности применяются серебряные аппараты в которых приготовляют фруктовые соки и другие напитки. В медицине известен ряд фармацевтических препаратов, содер­жащих коллоидное серебро.
Металлическое серебро служит для изготовления высококачественных оптических зеркал путем термического испарения. Бруски (или электролитический порошок) серебра служат положительными электродами в аккумуляторах, в которых отрицательными электродами являются пластинки из окиси цинка, электролит - едкое кали.
Существенную долю серебра потребляет электротехническая промышленность для серебрения медных проводников и при использовании высокочастотных волноводов. Серебро используется при производстве транзисторов, микросхем и других радиоэлектронных компонентов.

Серебро используется в качестве добавки (0,1-0,4 %) к свинцу для отливки токоотводов положительных пластин специальных свинцовых аккумуляторов (очень большой срок службы (до 10-12 лет) и малое внутреннее сопротивление).

Хлорид серебра используется в хлор-серебряно-цинковых батареях, а также для покрытий некоторых радарных поверхностей. Кроме того, хлорид серебра, прозрачный в инфракрасной области спектра, используется в инфракрасной оптике.

Монокристаллы фторида серебра используются для генерации лазерного излучения с длиной волны 0,193 мкм (ультрафиолетовое излучение).

Серебро используется в качестве катализатора в фильтрах противогазов.

Ацетиленид серебра (карбид) изредка применяется как мощное инициирующее взрывчатое вещество (детонаторы).

Фосфат серебра используется для варки специального стекла, используемого для дозиметрии излучений. Примерный состав такого стекла: фосфат алюминия - 42 %, фосфат бария - 25 %, фосфат калия - 25 %, фосфат серебра - 8 %.

Перманганат серебра, кристаллический тёмно-фиолетовый порошок, растворимый в воде; используется в противогазах. В некоторых специальных случаях серебро так же используется в сухих гальванических элементах следующих систем: хлор-серебряный элемент, бром-серебряный элемент, йод-серебряный элемент.

Серебро зарегистрировано в качестве пищевой добавки Е174.

Применение серебра в фотографии

В 1737 г. немецкий ученый И. Шульце впервые обнаружил светочувствительность нитрата серебра. Однако лишь через 100 лет после этого открытия появилась первая фотография (19 августа 1839 г.) В этот день в Парижской академии наук было сделано сообщение о способе получения изображения. Такой метод фотографии впоследствии был назван дагеротипом. Изображение получали обработкой парами ртути экспонированного слоя AgI, нанесенного на отполированную серебряную пластину. На пластине в местах действия света образуется серебряная амальгама, рассеивающая свет. После удаления избытка AgI и обнажения зеркальной поверхности изображение можно наблюдать, держа пластину под определенным углом.
С тех пор коренным образом изменилась технология получения фотографического изображения. Однако и сейчас основным светочувствительным материалом для фотографии являются кристаллы галогенидов серебра. Удивительно удачное сочетание в них различных физико-химических свойств позволило в относительно короткий срок разработать оптимальный способ получения фотографического изображения. Причем практическая фотография значительно определила теоретическое объяснение достигнутых результатов. Правда, в настоящее время этот разрыв довольно быстро сокращается. Но широкое применение фотографии ведет к истощению мировых запасов серебра и его удорожанию.
Кроме кинофотопромышленности, серебро употребляется в приборостроении и электромашиностроении, где используются его свойства отличного малоокисляющегося проводника тока. Химическая промышленность использует серебро для производства предметов лабораторного оборудования, стойких к действию щелочных растворов. Серебро так же идет на изготовление медицинских препаратов (колларгол, протаргол). Значительная доля серебра употребляется ювелирной промышленностью для изготовления драгоценных украшений, серебряной посуды и т.п.

Использование серебряной посуды

Столовое серебро не только признак благополучия или богатства, но и средство профилактики и здоровья.

Из истории: известно, что за 2500 лет до Рождества Христова египетские воины использовали серебро для лечения своих ран - накладывали на них очень тонкие серебряные пластины, и раны быстро заживали.

Персидский царь Кир, по свидетельству Геродота, во время длительных походов хранил воду только в серебряных бочках. Таким образом ему удалось избежать множества заболеваний, распространенных в то время. В конце XIX столетия швейцарский ботаник Карл Негели установил, что под влиянием серебра, введенного в воду, в ней гибнут все вредные микроорганизмы. Ионы серебра препятствуют размножению болезнетворных бактерий, вирусов и грибков.

Войско великого Александра Македонского двигалось с боями по странам Азии (IV века до нашей эры). После того как войска вступили на территорию Индии, среди воинов начались тяжелые желудочно-кишечные заболевания...

После ряда кровопролитных сражений и пышно отпразднованных побед весной 326 года Александр Македонский вышел к берегам Инда. Однако победить главного своего врага - болезнь - "непобедимое" войско Александра не могло. Воины, истощенные и обессиленные, отказались идти вперед к берегам Ганга, куда влекла Александра жажда завоеваний. Осенью 326 года войска Александра начали отступление. Сохранившиеся описания истории походов Александра Македонского показывают, что рядовые воины болели чаще, чем военачальники, хотя последние находились в походе в одинаковых условиях с рядовыми воинами и в равной степени делили с ними все неудобства и лишения походной жизни. Только через 2250 лет причина различной заболеваемости воинов Александра Македонского была найдена. Она заключалась в разности снаряжения: рядовому воину полагался оловянный бокал, а военачальнику - серебряный.

Кроме того, столовое серебро на протяжении многих веков считалось символом достатка и респектабельности. Известен факт, что в семье графа Орлова, одного из фаворитов Екатерины II, в обиходе был сервиз, состоявший из 3275 серебряных предметов, на изготовление которых ушло более 2 тонн серебра.

Антибактериальные свойства серебра

На всех космических шаттлах при подготовке к употреблению вода обогащается серебром; на авиалайнерах используются серебряные водяные фильтры. Все чаще при очистке воды в бассейнах применяется серебро - оно не раздражает слизистые оболочки и более эффективно как антисептик. В Японии с помощью серебра очищается воздух. В Швейцарии широко применяют серебряные фильтры в домах и офисах.

Основоположником научного изучения механизма действия серебра на микробную клетку является швейцарский ботаник Карл Нигели, который в 80-е годы ХIХ века установил, что взаимодействие не самого металла, а его ионов с клетками микроорганизмов вызывает их гибель. Это явление он назвал олигодинамией (от греч. «олигос» - малый, следовый, и «динамос» - действие, т.е. действие следов). Ученый доказал, что серебро проявляет олигодинамическое действие только в растворенном (ионизированном) виде.

Немецкий ученый Винцент, сравнивая активность некоторых металлов, установил, что наиболее сильным бактерицидным действием обладает серебро, меньшим - медь и золото.

Большой вклад в изучение антимикробных свойств серебряной воды, ее применения для обеззараживания питьевой воды и пищевых продуктов внесен академиком Л.А. Кульским. Его экспериментами, а позднее и работами других исследователей доказано, что именно ионы металлов и их диссоциированные соединения (вещества, способные распадаться на ионы) вызывают гибель микроорганизмов. Медико-биологическими исследованиями установлено, что бактерицидные свойства серебра объясняются уникальной способностью его ионов блокировать ферменты болезнетворных микроорганизмов, что приводит к их гибели. При этом микроорганизмы, необходимые для жизнедеятельности человека, сохраняются.

Пробы серебра

Проба (нем. Probe, от лат. probo - испытываю, оцениваю) благородных металлов, количественное содержание золота, серебра, платины или палладия (то есть благородных металлов) в лигатурном сплаве, из которого изготовляются ювелирные изделия, зубопротезные диски, монеты, медали и другое.

Система обозначения проб

Цвет сплава

Состав лигатуры

Основное применение

метрическая

золотниковая

каратная

Сплавы серебра

Филигранные изделия тонкой работы

Предметы сервировки стола

Филигранные изделия, изделия с эмалью

Ювелирно-бытовые изделия

Ювелирно-бытовые изделия

Белый с незначи-
тельной желтизной

Ювелирные изделия мелкой галантереи