Бинарные отношения. Операции над бинарными отношениями

Лекция 3.

п.3. Отношения на множествах. Свойства бинарных отношений.

3.1. Бинарные отношения .

Когда говорят о родстве двух людей, например, Сергей и Анна, то подразумевают, что есть некая семья, к членам которой они относятся. Упорядоченная пара (Сергей, Анна) отличается от других упорядоченных пар людей тем, что между Сергеем и Анной есть некое родство (кузина, отец и т. д.).

В математике среди всех упорядоченных пар прямого произведения двух множеств A и B (A ´B ) тоже выделяются «особые» пары в связи с тем, что между их компонентами есть некоторые «родственные» отношения, которых нет у других. В качестве примера рассмотрим множество S студентов какого-нибудь университета и множество K читаемых там курсов. В прямом произведении S ´K можно выделить большое подмножество упорядоченных пар (s , k ), обладающих свойством: студент s слушает курс k . Построенное подмножество отражает отношение «… слушает …», естественно возникающее между множествами студентов и курсов.

Для строгого математического описания любых связей между элементами двух множеств введем понятие бинарного отношения.

Определение 3.1. Бинарным (или двухместным ) отношением r между множествами A и B называется произвольное подмножество A ´B , т. е.

В частности, если A= B (то есть rÍA 2), то говорят, что r есть отношение на множестве A.

Элементы a и b называются компонентами (или координатами ) отношения r.

Замечание. Договоримся, что для обозначения отношений между элементами множеств использовать греческий алфавит : r, t, j, s, w и т. д.

Определение 3.2. Областью определения D r={a | $ b , что a rb } (левая часть). Областью значений бинарного отношения r называется множество R r={b | $ a , что a rb } (правая часть).

Пример 3. 1. Пусть даны два множества A ={1; 3; 5; 7} и B ={2; 4; 6}. Отношение зададим следующим образом t={(x ; y A ´B | x+ y =9}. Это отношение будет состоять из следующих пар (3; 6), (5; 4) и (7; 2), которые можно записать в виде t={(3; 6), (5; 4), (7;2)}. В данном примере D t={3; 5; 7} и R t= B ={2; 4; 6}.

Пример 3. 2. Отношение равенства на множестве действительных чисел есть множество r={(x ; y ) | x и y – действительные числа и x равно y }. Для этого отношения существует специальное обозначение «=». Область определения совпадает с областью значений и является множеством действительных чисел, D r= R r.

Пример 3. 3. Пусть A – множество товаров в магазине, а B – множество действительных чисел. Тогда j={(x ; y A ´B | y – цена x } – отношение множеств A и B .

Если обратить внимание на пример 3.1., то можно заметить, что данное отношение было задано сначала в виде t={(x ; y A ´B | x+ y =9}, а потом записано в виде t={(3; 6), (5;4), (7;2)}. Это говорит о том, что отношения на множествах (или одном множестве) можно задавать различными способами. Рассмотрим способы задания бинарных отношений.

Способы задания отношений:

1) с помощью подходящего предиката;

2) множество упорядоченных пар;

3) в графической форме: пусть A и B – два конечных множества и r – бинарное отношение между ними. Элементы этих множеств изображаем точками на плоскости. Для каждой упорядоченной пары отношения r рисуют стрелку, соединяющую точки, представляющие компоненты пары. Такой объект называется ориентированным графом или орграфом , точки же, изображающие элементы множеств, принято называть вершинами графа .

4) в виде матрицы: пусть A ={a 1, a 2, …, an } и B ={b 1, b 2, …, bm }, r – отношение на A ´B . Матричным представлением r называется матрица M =[mij ] размера n ´m , определенная соотношениями

.

Кстати, матричное представление является представлением отношения в компьютере.

Пример 3. 4. Пусть даны два множества A ={1; 3; 5; 7}и B ={2; 4; 6}. Отношение задано следующим образом t={(x ; y ) | x+ y =9}. Задать данное отношение как множество упорядоченных пар, орграфом, в виде матрицы.

Решение. 1) t={(3; 6), (5; 4), (7; 2)} - есть задание отношения как множества упорядоченных пар;

2) соответствующий ориентированный граф показан на рисунке.

https://pandia.ru/text/78/250/images/image004_92.gif" width="125" height="117">. ,

Пример 3. 5 . Еще в качестве примера можно рассмотреть предложенную Дж. фон Нейманом (1903 – 1957) блок-схему ЭВМ последовательного действия, которая состоит из множества устройств M :

,

где a – устройство ввода, b – арифметическое устройство (процессор), c – устройство управления, d – запоминающее устройство, e – устройство вывода.

Рассмотрим информационный обмен между устройствами mi и mj , которые находятся в отношении r, если из устройства mi поступает информация в устройство mj .

Это бинарное отношение можно задать перечислением всех его 14 упорядоченных пар элементов:

Соответствующий орграф, задающий это бинарное отношение, представлен на рисунке:


Матричное представление этого бинарного отношения имеет вид:

. ,

Для бинарных отношений обычным образом определены теоретико-множественные операции: объединение, пересечение и т. д.

Введем обобщенное понятие отношения.

Определение 3.3. n-местное (n -арное ) отношение r – это подмножество прямого произведения n множеств, то есть множество упорядоченных наборов (кортежей )

A 1´…´An ={(a 1, …, an )| a A 1Ù … Ùan ÎAn }

Многоместные отношения удобно задавать с помощью реляционных таблиц . Такое задание соответствует перечислению множества n -к отношения r. Реляционные таблицы широко используются в компьютерной практике в реляционных базах данных . Заметим, что реляционные таблицы нашли применение в повседневной практике. Всевозможные производственные, финансовые, научные и другие отчеты часто имеют форму реляционных таблиц.

Слово «реляционная » происходит от латинского слова relation , которое в переводе на русский язык означает «отношение». Поэтому в литературе для обозначения отношения используют букву R (латинскую) или r (греческую).

Определение 3.4. Пусть rÍA ´B есть отношение на A ´B. Тогда отношение r-1 называется обратным отношением к данному отношению r на A ´B , которое определяется следующим образом:

r-1={(b , a ) | (a , b )Îr}.

Определение 3.5. Пусть r ÍA ´B есть отношение на A ´B, а s ÍB ´C – отношение на B ´C. Композицией отношений s и r называется отношение t ÍA ´C ,которое определяется следующим образом:

t=s◦r= {(a , c )| $ b Î B, что (a , b )Îr и (b , c )Îs}.

Пример 3. 6 . Пусть , и C ={, !, d, à}. И пусть отношение r на A ´B и отношение s на B ´C заданы в виде:

r={(1, x ), (1, y ), (3, x )};

s={(x ,), (x , !), (y , d), (y , à)}.

Найти r-1 и s◦r, r◦s.

Решение. 1) По определению r-1={(x , 1), (y , 1), (x , 3)};

2) Используя определение композиции двух отношений, получаем

s◦r={(1,), (1, !), (1, d), (1, à), (3,), (3, !)},

поскольку из (1, x )Îr и (x ,)Îs следует (1,)Îs◦r;

из (1, x )Îr и (x , !)Îs следует (1, !)Îs◦r;

из (1, y )Îr и (y , d)Îs следует (1, d)Îs◦r;

из (3, x )Îr и (x , !)Îs следует (3, !)Îs◦r.

Теорема 3.1. Для любых бинарных отношений выполняются следующие свойства:

2) ;

3) - ассоциативность композиции.

Доказательство. Свойство 1 очевидно.

Докажем свойство 2. Для доказательства второго свойства покажем, что множества, записанные в левой и правой частях равенства, состоят из одних и тех же элементов. Пусть (a ; b ) Î (s◦r)-1 Û (b ; a ) Î s◦r Û $ c такое, что (b ; c ) Î r и (c ; a ) Î s Û $ c такое, что (c ; b ) Î r-1 и (a ; c ) Î s-1 Û (a ; b ) Î r -1◦s -1.

Свойство 3 доказать самостоятельно.

3.2. Свойства бинарных отношений .

Рассмотрим специальные свойства бинарных отношений на множестве A .

Свойства бинарных отношений.

1. Отношение r на A ´A называется рефлексивным , если (a ,a ) принадлежит r для всех a из A .

2. Отношение r называется антирефлексивным , если из (a ,b )Îr следует a ¹b .

3. Отношение r симметрично , если для a и b , принадлежащих A , из (a ,b )Îr следует, что (b ,a )Îr.

4. Отношение r называется антисимметричным , если для a и b из A , из принадлежности (a ,b ) и (b ,a ) отношению r следует, что a =b .

5. Отношение r транзитивно , если для a , b и c из A из того, что (a ,b )Îr и (b ,c )Îr, следует, что (a ,c )Îr.

Пример 3. 7. Пусть A ={1; 2; 3; 4; 5; 6}. На этом множестве задано отношение rÍA 2, которое имеет вид: r={(1, 1), (2, 2), (3, 3), (4; 4), (5; 5), (6; 6), (1; 2), (1; 4), (2; 1), (2;4), (3;5), (5; 3), (4; 1), (4; 2)}. Какими свойствами обладает данное отношение?

Решение. 1) Это отношение рефлексивно, так как для каждого a ÎA , (a ; a )Îr.

2) Отношение не является антирефлексивным, так как не выполняется условие этого свойства. Например, (2, 2)Îr, но отсюда не следует, что 2¹2.

3) Рассмотрим все возможные случаи, показав, что отношение r является симметричным:

(a , b )Îr

(b , a )

(b , a )Îr?

4) Данное отношение не является антисимметричным, поскольку (1, 2)Îr и (2,1)Îr, но отсюда не следует, что 1=2.

5) Можно показать, что отношение r транзитивно, используя метод прямого перебора.

(a , b )Îr

(b , c )Îr

(a , c )

(a , c )Îr?

Как по матрице представления

определить свойства бинарного отношения

1. Рефлексивность: на главной диагонали стоят все единицы, звездочками обозначены нули или единицы.

.

2. Антирефлексивность: на главной диагонали все нули.

3. Симметричность: если .

4. Антисимметричность: все элементы вне главной диагонали равны нулю; на главной диагонали тоже могут быть нули.

.

Операция «*» выполняется по следующему правилу: , где , .

5. Транзитивность: если . Операция «◦» выполняется по обычному правилу умножения, при этом надо учитывать: .

3.3 Отношение эквивалентности. Отношение частичного порядка.

Отношение эквивалентности является формализацией такой ситуации, когда говорят о сходстве (одинаковости) двух элементов множества.

Определение 3.6. Отношение r на A есть отношение эквивалентности , если оно рефлексивно, симметрично и транзитивно. Отношение эквивалентности a rb часто обозначается: a ~ b .

Пример 3. 8 . Отношение равенства на множестве целых чисел есть отношение эквивалентности.

Пример 3. 9 . Отношение «одного роста» есть отношение эквивалентности на множестве людей X .

Пример 3. 1 0 . Пусть ¢ - множество целых чисел. Назовем два числа x и y из ¢ сравнимыми по модулю m (m Î¥) и запишем , если равны остатки этих чисел от деления их на m , т. е. разность (x -y ) делится на m .

Отношение «сравнимых по модулю m целых чисел» есть отношение эквивалентности на множестве целых числе ¢. В самом деле:

это отношение рефлексивно, т. к. для "x ΢ имеем x -x =0, и, следовательно, оно делится на m ;

это отношение симметрично, т. к. если (x -y ) делится на m , то и (y -x ) тоже делится на m ;

это отношение транзитивно, т. к. если (x -y ) делится на m , то для некоторого целого t 1 имеем https://pandia.ru/text/78/250/images/image025_23.gif" width="73" height="24 src=">, отсюда , т. е. (x -z ) делится на m .

Определение 3.7. Отношение r на A есть отношение частичного порядка , если оно рефлексивно, антисимметрично и транзитивно и обозначается символом °.

Частичный порядок важен в тех ситуациях, когда мы хотим как-то охарактеризовать старшинство. Иными словами, решить при каких условиях считать, что один элемент множества превосходит другой.

Пример 3. 11 . Отношение x £y на множестве действительных чисел есть отношение частичного порядка. ,

Пример 3. 1 2 . Во множестве подмножеств некоторого универсального множества U отношение A ÍB есть отношение частичного порядка.

Пример 3. 1 3 . Схема организации подчинения в учреждении есть отношение частичного порядка на множестве должностей.

Прообразом отношения частичного порядка является интуитивное понятие отношения предпочтения (предшествования). Отношение предпочтения выделяет класс задач, которые можно объединить, как задача о проблеме выбора наилучшего объекта .

Формулировка задачи: пусть имеется совокупность объектов A и требуется сравнить их по предпочтительности, т. е. задать отношение предпочтения на множестве A и определить наилучшие объекты.

Отношение предпочтения P , которое можно определить как «aPb , a , b ÎA Û объект a не менее предпочтителен, чем объект b » является по смыслу рефлексивным и антисимметричным (каждый объект не хуже самого себя, и, если объект a не хуже b и b не хуже a , то они одинаковы по предпочтительности). Естественно считать, что отношение P транзитивно (хотя в случае, когда, например, предпочтения обсуждаются группой лиц с противоположными интересами, это свойство может быть нарушено), т. е. P – отношение частичного порядка.

Один из возможных способов решения задачи сравнения объектов по предпочтительности – ранжирование , т. е. упорядочение объектов в соответствии с убыванием их предпочтительности или равноценности. В результате ранжирования мы выделяем «наилучшие» или «наихудшие» с точки зрения отношения предпочтения объекты.

Области применения задачи о проблеме выбора наилучшего объекта: теория принятия решений, прикладная математика, техника, экономика, социология, психология.

Лекция 21. Свойства отношений

1. Свойство рефлексивености

2. Свойство симметричности

3. Свойство транзитивности

Мы установили, что бинарное отношение на множестве X пред­ставляет собой множество упорядоченных пар элементов, принад­лежащих декартову произведению X х Х. Это математическая сущ­ность всякого отношения. Но, как и любые другие понятия, отноше­ния обладают свойствами. Их удалось выделить, изучая различные конкретные отношения. Свойств достаточно много, в нашем курсе мы будем изучать только некоторые.

Рассмотрим на множестве отрезков, представ­ленных на рис. 98, отношения перпендикулярно­сти, равенства и «длиннее». Построим графы этих отношений (рис. 99) и будем их сравнивать. Ви­дим, что граф отношения равенства отличается от двух других наличием петель в каждой его вершине. Эти петли - результат того, что отно­шение равенства отрезков обладает свойством: любой отрезок равен самому себе. Говорят, что отношение равенства обладает свойством рефлек­сивности или просто, что оно рефлексивно.

Определение. Отношение R на множестве X называется рефлексив­ным, если о каждом элементе множества X можно сказать, что он находится в отношении R с самим собой.

R рефлексивно на Х ↔ х R х для любого х € X.

опр.

Если отношение R рефлексивно на множестве X, то в каждой вер­шине графа данного отношения имеется петля. Справедливо и обрат­ное утверждение: граф, каждая вершина которого имеет петлю, задает отношения, обладающие свойством рефлексивности.

Примеры рефлексивных отношений:

Отношение «кратно» на множестве натуральных чисел (каждое натуральное число кратно самому себе);

Отношение подобия треугольников (каждый треугольник подо­бен самому себе).

Существуют отношения, которые свойством рефлексивности не обладают. Таким, например, является отношение перпендикулярности на множестве отрезков: нет ни одного отрезка, о котором можно ска­зать, что он перпендикулярен самому себе. Поэтому на графе отноше­ния перпендикулярности (рис. 99) нет ни одной петли. Не обладает свойством рефлексивности и отношение «длиннее» для отрезков.

Обратим теперь внимание на графы отношений перпендикулярно­сти и равенства отрезков. Они «похожи» тем, что если есть одна стрелка, соединяющая пару элементов, то обязательно есть и другая, соединяющая те же элементы, но идущая в противоположном направ­лении. Эта особенность графа отражает те свойства, которыми обла­дают отношения параллельности и равенства отрезков:

Если один отрезок перпендикулярен другому отрезку, то этот «другой» перпендикулярен первому;



Если один отрезок равен другому отрезку, то этот «другой» равен первому.

Про отношения перпендикулярности и равенства отрезков гово­рят, что они обладают свойством симметричности или просто сим­метричны.

Определение. Отношение R на множестве X называется симмет­ричным, если выполняется условие: из того, что элемент х находит­ся в отношении R с элементом у, следует, что и элементу находит­ся в отношении R с элементом х.

Используя символы, это отношение можно записать в таком виде:

R симметрично на Х ↔ (х R y →yRx).

опр.

Граф симметричного отношения обладает особенностью: вместе с каждой стрелкой, идущей от х к у, граф содержит и стрелку, идущую от у к x . Справедливо и обратноеутверждение. Граф, содержащий вместе с каждой стрелкой, идущей от x к у, и стрелку, идущую от у к x , является графом симметричного отношения.

В дополнение к рассмотренным двум примерам симметричных от­ношений присоединим еще такие:

Отношениепараллельности на множестве прямых (если прямая x параллельна прямой у, то и прямая у параллельна прямой х)

Отношение подобия треугольников (если треугольник F подобен треугольнику Р, то треугольник Р подобен треугольнику F).

Существуют отношения, которые свойством симметричности не обладают. Таким, например, является отношение «длиннее» на мно­жестве отрезков. Действительно, если отрезок x длиннее отрезка у, то отрезок у не может быть длиннее отрезка х. Про отношения «длиннее» говорят, что оно обладает свойством антисимметрично­сти или просто антисимметрично.

Определение. Отношение R на множестве X называется анти­симметричным, если для различных элементов х и у из множества X выполнено условие: из того, что х находится в отношении R с элементом у, следует, что элемент у в отношении R с элементом х не находится.

R симметрично на Х ↔ (х R y ^ x≠y →yRx).

опр.

Граф антисимметричного отношения обладает особенностью: если две вершины графа соединены стрелкой, то эта стрелка только одна. Справедливо и обратное утверждение: граф, вершины которого со­единены только одной стрелкой, есть граф антисимметричного отношения.

Кроме отношения «длиннее» на множестве отрезков свойством ан­тисимметричности, например, обладают:

Отношение «больше» для чисел (если х больше у, то у не может
быть больше х);

Отношение «больше на 2» для чисел (если х боль­ше у на 2, то у не может быть больше на 2 числа х),

Существуют отношения, не обладающие ни свой­ством симметричности, ни свойством антисиммет­ричности. Рассмотрим, например, отношение «быть сестрой» на множестве детей одной семьи. Пусть в семье трое детей: Катя, Маша и Толя. Тогда граф отношения «быть сестрой» будет таким, как на рисунке 100. Он показывает, что данное отношение не обладает ни свой­ством симметричности, ни свойством антисимметричности.

Обратим внимание еще раз на одну особенность графа отноше­ния «длиннее» (рис. 99). На нем можно заметить: если стрелки про­ведены от е к а и от а к с, то есть стрелка от е к с ; если стрелки приведены от е к b и от b к с, то есть стрелка и от е к с и т.д. Эта особенность графа отражает важное свойство отношения «длиннее»: если первый отрезок длиннее второго, а второй - длиннее третьего, то первый - длиннее третьего. Говорят, что это отношение обладает свойством транзитивности или просто транзитивно.

Определение. Отношение R на множестве X называется транзи­тивным, если выполняется условие; из того, что элемент х нахо­дится в отношении R с элементом у и элемент у находится в от­ношении R с элементом z, следует, что элемент х находится в от­ношении К с элементом z .

Используя символы, это определение можно записать в таком виде:

R транзитивно на X ↔ (х R y ^ yRz → xRz).

опр.

Граф транзитивного отношения с каждой парой стрелок, идущих от x к у и у к z , содержит стрелку, идущую от х к z. Справедливо и обратное утверждение.

Кроме отношения «длиннее» на множестве отрезков свойством транзитивности обладает отношение равенства: если отрезок х равен отрезку у и отрезок у равен отрезку z, то отрезок х равен отрезку z, Это свойство отражено и на графе отношения равенства (рис. 99)

Существуют отношения, которые свойством транзитивности не об­ладают. Таким отношением является, например, отношение перпенди­кулярности: если отрезок а перпендикулярен отрезку d , а отрезок d перпендикулярен отрезку b, то отрезки а и b не перпендикулярны!

Рассмотрим еще одно свойство отношений, которое называют свой­ством связанности, а отношение, обладающее им, называют связанным.

Определение. Отношение R на множестве X называется связан­ным, если для любых элементов х и у из множества X выполняется условие: из того, что х и у различны, следует, что либо х находит­ся в отношении R с элементом у, либо элемент у находится в от­ношении R с элементом х.

Используя символы, это определение можно записать в таком виде:

R связано на множестве X ↔ (х ≠ у => хRу v уRх).

опр.

Например, свойством связанности обладают отношения «больше» длянатуральных чисел: для любых различных чисел х и у можно ут­верждать, что либо х > у, либо у > х.

На графе связанного отношения любые две вершины соединены стрелкой. Справедливо и обратное утверждение.

Существуют отношения, которые свойством связанности не обла­дают. Таким отношением, например, является отношение делимости на множестве натуральных чисел: можно назвать такие числа х и у, что ни число х не является делителем числа у, ни число у не является делителем числа х.

Выделенные свойства позволяют анализировать различные отно­шения с общих позиций - наличия (или отсутствия) у них тех или иных свойств.

Так, если суммировать все сказанное об отношении равенства, за­данном на множестве отрезков (рис. 99), то получается, что оно реф­лексивно, симметрично и транзитивно. Отношение «длиннее» на том же множестве отрезков антисимметрично и транзитивно, а отношение перпендикулярности - симметрично, но оно не обладает свойствами рефлексивности и транзитивности. Все эти отношения на заданном множестве отрезков связанными не являются.

Задача 1. Сформулировать свойства отноше­ния R, заданного при помощи графа (рис. 101).

Решение. Отношение R -антисимметрично, так как вершины графа соединяются только одной стрелкой.

Отношение R - транзитивно, так как с парой стрелок, идущих от b к а и от а к с, на графе есть стрелка, идущая от b к с.

Отношение R - связанно, так как любые две вер­шины соединены стрелкой.

Отношение R свойством рефлексивности не обла­дает, так как на графе есть вершины, в которых петли нет.

Задача 2. Сформулировать свойства отношения «больше в 2 раза», заданного на множестве натуральных чисел.

Решение. «Больше в 2 раза» - это краткая форма отношения «число х больше числа у в 2 раза». Это отношение антисимметрично, так как выполняется условие: из того, что число х больше числа у в 2 раза, следует, что число y не больше числа x 2 раза.

Данное отношение не обладает свойством рефлексивности, пото­му что ни про одно число нельзя сказать, что оно больше самого себя в 2 раза.

Заданное отношение не транзитивно, так как из того, что число x больше числа у на 2, а число у больше числа z на 2, следует, что число х не может быть больше числа z на 2.

Это отношение на множестве натуральных чисел свойством связан­ности не обладает, так как существуют пары таких чисел х и у, что ни число х не больше числа у в два раза, ни число у не больше х в 2 раза. Например, это числа 7 и 3, 5 и 8 и др.

Элементы множества, как правило, находятся в каком-либо отношении друг относительно друга. Эти отношения можно задать в виде неполных предложений -- предикатов, например, «меньше, чем...», «больше, чем...», «эквивалентно», «конгруэнтно» и т. п.

Тот факт, что некоторый элемент находится в каком-либо отношении к элементу того же множества x j , математически записывают как XiRxj, где R -- символ отношения.

Отношение из двух элементов множества X называют бинарным. Бинарные отношения множеств X и Y представляют собой некоторое множество упорядоченных пар (х, у), образованных декартовым произведением X х Y. В общем случае можно говорить не только о множестве упорядоченных пар, но и о множестве упорядоченных троек, четверок элементов и т. д., т. е. о парных отношениях, получаемых в результате декартова произведения , где п -- размерность n -строчек.

Рассмотрим основные виды отношений -- отношения эквивалентности, порядка и доминирования.

Некоторые элементы множеств можно считать эквивалентными в том случае, когда любой из этих элементов при определенных условиях можно заменить другим, т. е. данные элементы находятся вот-ношении эквивалентности. Примерами отношений эквивалентности являются отношения параллельности на множестве прямых какой-либо плоскости; подобия на множестве треугольников; принадлежности к одной функциональной группе микросхем или к одному классу типоразмеров и т. д.

Термин «отношение эквивалентности» будем применять при выполнении следующих условий:

1) каждый элемент эквивалентен самому себе;

2) высказывание, что два элемента являются эквивалентными, не требует уточнения того, какой из элементов рассматривается первым, а какой вторым;

3) два элемента, эквивалентные третьему, эквивалентны между собой.

Введем для обозначения эквивалентности символ ~, тогда рассмотренные условия можно записать следующим образом:

1) х ~ х (рефлективность);

2) х ~ уу ~ х (симметричность);

3) х ~ у и у ~ z х ~ z (транзитивность).

Следовательно, отношение R называют отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Пусть некоторому элементу х X эквивалентно некоторое подмножество элементов А X, тогда это подмножество образует класс эквивалентности, эквивалентный х. Очевидно, что все элементы одного и того же класса эквивалентности эквивалентны между собой (свойство транзитивности). Тогда всякий элемент хХ может находиться в одном и только одном классе эквивалентности, т. е. в этом случае множество X разбивается на некоторое непересекающееся подмножество классов эквивалентности , где J -- некоторое множество индексов.

Таким образом, каждому отношению эквивалентности на множестве X соответствует некоторое разбиение множества X на классы.

Часто сталкиваются с отношениями, которые определяют некоторый порядок расположения элементов множества. Например, в процессе автоматизированного конструирования требуется вводить множество одних исходных данных раньше или позже, чем множество других. При этом может оказаться, что элементы одного множества больше или меньше элементов другого и т. д. Во всех этих случаях можно расположить элементы множества X или группы элементов в некотором порядке (например, в виде убывающей или возрастающей последовательности), т. е. ввести отношение порядка на множестве X.

Различают отношения строгого порядка, для которых применяют символы и отношения нестрогого порядка, где используют символы. Эти отношения характеризуются следующими свойствами:

для отношения строгого порядка:

х -- ложно (антирефлексивность);

х<У, а У<х -- взаимоисключаются (несимметричность);

x<у и у -- (транзитивность);

для отношения нестрогого порядка:

х X -- истинно (рефлексивность);

ху и ух х = у -- (антисимметричность);

х у и у z xу z -- (транзитивность).

Множество X называют упорядоченным, если любые два элемента х и у этого множества сравнимы, т. е. если для них выполняется одно из условий: х < у, х = у, у < х.

Упорядоченное множество называют кортежем. В общем случае кортеж -- это последовательность элементов, т. е. совокупность элементов, в которой каждый элемент занимает вполне определенное место. Элементы упорядоченного множества называются компонентами кортежа. Примерами кортежа может служить упорядоченная последовательность чисел арифметической или геометрической прогрессий, последовательность технологических операций при изготовлении какого-либо радиоэлектронного изделия, упорядоченная последовательность установочных позиций печатной платы для закрепления конструктивных элементов.

Во всех этих множествах место каждого элемента вполне определено и не может произвольно изменяться.

При обработке конструкторской информации на ЭВМ часто используют отношения доминирования. Говорят, что хX доминирует над уX, т. е. х>>у, если элемент х в чем-либо превосходит (имеет приоритет) элемент у того же множества. Например, под х можно понимать один из списков данных, который должен поступить на обработку первым. При анализе нескольких конструкций РЭА какой-либо из них должен быть отдан приоритет, так как эта конструкция обладает лучшими, с нашей точки зрения, свойствами, чем другие, т. е. конструкция х доминирует над конструкцией у.

Свойство транзитивности при этом не имеет места. Действительно, если, например, конструкцию х по каким-либо одним параметрам предпочли конструкции у, а конструкцию у по каким-либо другим параметрам предпочли конструкции z, то отсюда еще не следует, что конструкции х должно быть отдано предпочтение по сравнению с конструкцией г.

Отображение множеств. Одним из основных понятий теории множеств является понятие отображения. Если заданы два непустых множества X и Y, то закон, согласно которому каждому элементу xX ставится в соответствие элемента, называют однозначным отображением X в Y или функцией, определенной на X и принимающей значение на Y.

На практике приходится иметь дело и с многозначными отображениями множества X на множестве Y, которые определяют закон, согласно которому каждому элементу хX ставится в соответствие некоторое подмножество , называемое образом элементов. Возможны случаи, когда Гх = 0.

Пусть задано некоторое подмножество АX. Для любого хА образом х является подмножество . Совокупность всех элементов Y, являющихся образами для всех х в А, назовем образом множества А и будем обозначать ГА. В этом случае

Определение . Бинарным отношением R называется подмножество пар (a,b)∈R декартова произведения A×B, т. е. R⊆A×B . При этом множество A называют областью определения отношения R, множество B – областью значений.

Обозначение: aRb (т. е. a и b находятся в отношении R). /

Замечание : если A = B , то говорят, что R есть отношение на множестве A .

Способы задания бинарных отношений

1. Списком (перечислением пар), для которых это отношение выполняется.

2. Матрицей. Бинарному отношению R ∈ A × A , где A = (a 1 , a 2 ,..., a n), соответствует квадратная матрица порядка n , в которой элемент c ij , стоящий на пересечении i-й строки и j-го столбца, равен 1, если между a i и a j имеет место отношение R , или 0, если оно отсутствует:

Свойства отношений

Пусть R – отношение на множестве A, R ∈ A×A . Тогда отношение R:

    рефлексивно, если Ɐ a ∈ A: a R a (главная диагональ матрицы рефлексивного отношения содержит только единицы);

    антирефлексивно, если Ɐ a ∈ A: a R a (главная диагональ матрицы рефле сивного отношения содержит только нули);

    симметрично, если Ɐ a , b ∈ A: a R b ⇒ b R a (матрица такого отношения симметрична относительно главной диагонали, т.е. c ij c ji);

    антисимметрично, если Ɐ a, b ∈ A: a R b & b R a ⇒ a = b (в матрице такого отношения отсутствуют единицы, симметричные относительно главной диагонали);

    транзитивно, если Ɐ a, b, c ∈ A: a R b & b R c ⇒ a R c (в матрице такого отношения должно выполняться условие: если в i-й строке стоит единица, например в j-ой координате (столбце) строки, т. е. c ij = 1 , то всем единицам в j-ой строке (пусть этим единицам соответствуют k е координаты такие, что, c jk = 1) должны соответствовать единицы в i-й строке в тех же k-х координатах, т. е. c ik = 1 (и, может быть, ещё и в других координатах).

Задача 3.1. Определите свойства отношения R – «быть делителем», заданного на множестве натуральных чисел.

Решение.

отношение R = {(a,b):a делитель b}:

    рефлексивно, не антирефлексивно, так как любое число делит само себя без остатка: a/a = 1 для всех a∈N ;

    не симметрично, антисимметрично, например, 2 делитель 4, но 4 не является делителем 2;

    транзитивно,таккакесли b/a ∈ N и c/b ∈ N, то c/a = b/a ⋅ c/b ∈ N, например, если 6/3 = 2∈N и 18/6 = 3∈N, то 18/3 = 18/6⋅6/3 = 6∈N.

Задача 3.2. Определите свойства отношения R – «быть братом», заданного на множестве людей.
Решение.

Отношение R = {(a,b):a - брат b}:

    не рефлексивно, антирефлексивно из-за очевидного отсутствия aRa для всех a;

    не симметрично, так как в общем случае между братом a и сестрой b имеет место aRb , но не bRa ;

    не антисимметрично, так как если a и b –братья, то aRb и bRa, но a≠b;

    транзитивно, если называть братьями людей, имеющих общих родителей (отца и мать).

Задача 3.3. Определите свойства отношения R – «быть начальником», заданного на множестве элементов структуры

Решение.

Отношение R = {(a,b) : a - начальник b}:

  • не рефлексивно, антирефлексивно, если в конкретной интерпретации не имеет смысла;
  • не симметрично, антисимметрично, так как для всех a≠b не выполняется одновременно aRb и bRa;
  • транзитивно, так как если a начальник b и b начальник c , то a начальник c .

Определите свойства отношения R i , заданного на множестве M i матрицей, если:

  1. R 1 «иметь один и тот же остаток от деления на 5»; M 1 множество натуральных чисел.
  2. R 2 «быть равным»; M 2 множество натуральных чисел.
  3. R 3 «жить в одном городе»; M 3 множество людей.
  4. R 4 «быть знакомым»; M 4 множество людей.
  5. R 5 {(a,b):(a-b) - чётное; M 5 множество чисел {1,2,3,4,5,6,7,8,9}.
  6. R 6 {(a,b):(a+b) - чётное; M 6 множество чисел {1,2,3,4,5,6,7,8,9}.
  7. R 7 {(a,b):(a+1) - делитель (a+b)} ; M 7 - множество {1,2,3,4,5,6,7,8,9}.
  8. R 8 {(a,b):a - делитель (a+b),a≠1}; M 8 - множество натуральных чисел.
  9. R 9 «быть сестрой»; M 9 - множество людей.
  10. R 10 «быть дочерью»; M 10 - множество людей.

Операции над бинарными отношениями

Пусть R 1 , R 1 есть отношения, заданные на множестве A .

    объединение R 1 ∪ R 2: R 1 ∪ R 2 = {(a,b) : (a,b) ∈ R 1 или (a,b) ∈ R 2 } ;

    пересечение R 1 ∩ R 2: R 1 ∩ R 2 = {(a,b) : (a,b) ∈ R 1 и (a,b) ∈ R 2 } ;

    разность R 1 \ R 2: R 1 \ R 2 = {(a,b) : (a,b) ∈ R 1 и (a,b) ∉ R 2 } ;

    универсальное отношение U: = {(a;b)/a ∈ A & b ∈ A}. ;

    дополнение R 1 U \ R 1 , где U = A × A;

    тождественное отношение I: = {(a;a) / a ∈ A};

    обратное отношение R -11 : R -11 = {(a,b) : (b,a) ∈ R 1 };

    композиция R 1 º R 2: R 1 º R 2: = {(a,b) / a ∈ A&b ∈ B& ∃ c ∈ C: aR 1 c & c R 2 b}, где R 1 ⊂ A × C и R 2 ⊂ C × B;

Определение. Степенью отношения R на множестве A называется его композиция с самим собой.

Обозначение:

Определение . Если R ⊂ A × B , то R º R -1 называется ядром отношения R .

Теорема 3.1. Пусть R ⊂ A × A – отношение, заданное на множестве A .

  1. R рефлексивно тогда и только тогда, (далее используется знак ⇔) когда I ⊂ R.
  2. R симметрично ⇔ R = R -1 .
  3. R транзитивно ⇔ R º R ⊂ R
  4. R антисимметрично ⇔ R ⌒ R -1 ⊂ I .
  5. R антирефлексивно ⇔ R ⌒ I = ∅ .

Задача 3.4 . Пусть R - отношение между множествами {1,2,3} и {1,2,3,4}, заданное перечислением пар: R = {(1,1), (2,3), (2,4), (3,1), (3,4)}. Кроме того, S - отношение между множествами S = {(1,1), (1,2), (2,1), (3,1), (4,2)}. Вычислите R -1 , S -1 и S º R. Проверьте, что (S º R) -1 = R -1 , S -1 .

Решение.
R -1 = {(1,1), (1,3), (3,2), (4,2), (4,3)};
S -1 = {(1,1), (1,2), (1,3), (2,1), (2,4)};
S º R = {(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)};
(S º R) -1 = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)};
R -1 º S -1 = {(1,1), (1,2), (1,3), (2 ,1), (2,2), (2,3)} = (S º R) -1 .

Задача 3.5 . Пусть R отношение «...родитель...», а S отношение «...брат...» на множестве всех людей. Дайте краткое словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 и R º R.

Решение.

R -1 - отношение«...ребёнок...»;

S -1 - отношение«...брат или сестра...»;

R º S - отношение «...родитель...»;

S -1 º R -1 - отношение «...ребёнок...»

R º R - отношение «...бабушка или дедушка...»

Задачи для самостоятельного решения

1) Пусть R - отношение «...отец...», а S - отношение «...сестра...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 , R º R.

2) Пусть R - отношение «...брат...», а S - отношение «...мать...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , S º S.

3) Пусть R - отношение «...дед...», а S - отношение «...сын...» на множестве всех людей. Дайте словесное описание отношениям:

4) Пусть R - отношение «...дочь...», а S - отношение «...бабушка...» на множе- стве всех людей. Дайте словесное описание отношениям:

5) Пусть R - отношение «...племянница...», а S - отношение «...отец...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , R º R.

6) Пусть R - отношение «сестра...», а S - отношение «мать...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 , S º S.

7) Пусть R - отношение «...мать...», а S - отношение «...сестра...» на множе- стве всех людей. Дайте словесное описание отношениям:

R -1 , S1, R º S, S1 º R1, S º S.

8) Пусть R - отношение «...сын...», а S - отношение «...дед...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , R º R.

9) Пусть R - отношение «...сестра...», а S - отношение «...отец...» на множе- стве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 , S º S.

10) Пусть R - отношение «...мать...», а S - отношение «...брат...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , R º R.

В повседневной жизни нам постоянно приходится сталкиваться с понятием «отношения». Отношения – один из способов задания взаимосвязей между элементами множества.

Унарные (одноместные) отношения отражают наличие какого-то одного признака R у элементов множества M (например, «быть красным» на множестве шаров в урне).

Бинарные (двуместные) отношения используются для определения взаимо

связей, которыми характеризуются пары элементов во множестве M .

Например, на множестве людей могут быть заданы следующие отношения: «жить в одном городе», «x работает под руководством y », «быть сыном», «быть старше» и т.д. на множестве чисел: «число a больше числа b », «число a является делителем числа b », «числа a и b дают одинаковый остаток при делении на 3».

В прямом произведении , где A - множество студентов какого-либо вуза, B - множество изучаемых предметов, можно выделить большое подмножество упорядоченных пар (a, b) , обладающих свойством: «студент a изучает предмет b ». Построенное подмножество отражает отношение «изучает», возникающее между множествами студентов и предметов. Число примеров можно продолжить

Отношения между двумя объектами являются предметом исследования экономики, географии, биологии, физики, лингвистики, математики и других наук.

Для строгого математического описания любых связей между элементами двух множеств вводится понятие бинарного отношения.

Бинарным отношением между множествами A и B называется подмножество R прямого произведения . В том случае, когда можно просто говорить об отношении R на A .

Пример 1 . Выпишите упорядоченные пары, принадлежащие бинарным отношениям R 1 и R 2 , заданными на множествах A и : , . Подмножество R 1 состоит из пар: . Подмножество .

Область определения R на есть множество всех элементов из A таких, что для некоторых элементов имеем . Иными словами область определения R есть множество всех первых координат упорядоченных пар из R .

Множество значений отношения R на есть множество всех таких, что для некоторых . Другими словами множество значений R есть множество всех вторых координат упорядоченных пар из R .

В примере 1 для R 1 область определения: , множество значений - . Для R 2 область определения: , множество значений: .

Во многих случаях удобно использовать графическое изображение бинарного отношения. Оно осуществляется двумя способами: с помощью точек на плоскости и с помощью стрелок.

В первом случае выбирают две взаимно перпендикулярные линии в качестве горизонтальной и вертикальной осей. На горизонтальной оси откладывают элементы множества A и через каждую точку проводят вертикальную линию. На вертикальной оси откладывают элементы множества B , через каждую точку проводят горизонтальную линию. Точки пересечения горизонтальных и вертикальных линий изображают элементы прямого произведения .

Пример 5 . Пусть , .

Пусть R 1 задано на перечислением упорядоченных пар: . Бинарное отношение R 2 на множестве задано с помощью правила: упорядочена пара , если a делится на b . Тогда R 2 состоит из пар: .

Бинарные отношения, из примера 2, R 1 и R 2 изображены графически на рис. 6 и рис.7.

Рис. 6 Рис. 7

Чтобы изобразить бинарное отношение с помощью стрелок, слева изображаются точками элементы множества A , справа - множества B . Для каждой пары (a, b) , содержащейся в бинарном отношении R , проводится стрелка от a к b , . Графическое изображение бинарного отношения R 1 , приведенного в примере 6, показано на рис.8.

Рис.8

Бинарные отношения на конечных множествах могут быть заданы матрицами. Предположим, что задано бинарное отношение R между множествами A и B . , .

Строки матрицы нумеруются элементами множества A , а столбцы – элементами множества B . Ячейку матрицы, стоящую на пересечении i - ой строки и j - ого столбца принято обозначать через C ij , а заполняется она следующим образом:

Полученная матрица будет иметь размер .

Пример 6. Пусть задано множество . На множестве задайте списком и матрицей отношение R – «быть строго меньше».

Отношение R как множество содержит все пары элементов (a , b) из M такие, что .

Матрица отношения, построенная по вышеуказанным правилам, имеет следующий вид:

Свойства бинарных отношений:

1. Бинарное отношение R на множестве называетсярефлексивным , если для любого элемента a из M пара (a, a) принадлежит R , т.е. имеет место для любого a из M :

Отношения «жить в одном городе», «учиться в одном вузе», «быть не больше» являются рефлексивными.

2. Бинарное отношение называется антирефлексивным ,если оно не обладает свойством рефлексивности для любых a :

Например, «быть больше», «быть младше» - это антирефлексивные отношения .

3. Бинарное отношение R называется симметричным , если для любых элементов a и b из M из того, что пара (a, b) принадлежит R , , вытекает, что пара (b, a) принадлежит R , т.е.

Симметрична параллельность прямых, т.к. если // , то // . Симметрично отношение «быть равным» на любом множестве или «быть взаимнопростым на N».

Отношение R симметрично тогда и только тогда, когда R=R -1

4. Если для несовпадающих элементов верно отношение , но ложно , то отношение антисимметрично . Можно сказать иначе:

Антисимметричными являются отношения «быть больше», «быть делителем на N», «быть младше».

5. Бинарное отношение R называется транзитивным , если для любых трех элементов из того, что пары (a, b) и (b, c) принадлежат R , следует, что пара (a, c) принадлежит R :

Транзитивны отношения : «быть больше», «быть параллельным», «быть равным» и др.

6. Бинарное отношение R антитранзитивно , если оно не обладает свойством транзитивности.

Например, «быть перпендикулярным» на множестве прямых плоскости ( , , но неверно, что ).

Т.к. бинарное отношение может быть задано не только прямым перечислением пар, но и матрицей, то целесообразно выяснить, какими признаками характеризуется матрица отношения R , если оно: 1) рефлексивно, 2) антирефлексивно, 3)симметрично, 4) антисимметрично, 5) транзитивно.

Пусть R задано на , .R либо выполняется в обе стороны, либо не выполняется вообще. Таким образом, если в матрице стоит единица на пересечении i - ой строки и j - ого столбца, т.е. C ij =1, то она должна стоять и на пересечении j - ой строки и i - ого столбца, т.е. C ji =1, и наоборот, если C ji =1, то C ij =1. Таким образом, матрица симметричного отношения симметрична относительно главной диагонали.

4. R антисимметрично, если из и следует: . Это означает, что в соответствующей матрице ни для каких i , j не выполняется C ij = C ji =1. Таким образом, в матрице антисимметричного отношения отсутствуют единицы, симметричные относительно главной диагонали .

5. Бинарное отношение R на непустом множестве A называется транзитивным если

Вышеприведенное условие должно выполняться для любых элементов матрицы. И, наоборот, если в матрице R имеется хотя бы один элемент C ij =1, для которого данное условие не выполняется, то R не транзитивно.